המפץ הגדול, חלק א': יקום מתרחב ויקום סטטי
כתב: רן לוי
יש תקופות מעניינות רבות בהיסטוריה של המדע. לו הייתי יכול, הייתי שמח להיכנס למכונת זמן ולבקר בהן, אבל לא כל התקופות: אינני מוותר בקלות על האינטרנט והמקרר בשביל לצוד ממותות עם חניתות. יש תקופה אחת ספציפית שבשביל להגיע אליה, הייתי מוותר אפילו על מיזוג האוויר לשבוע: הזמן שבין שתי מלחמות העולם, ובייחוד השנים 1915 ו-1930.
בחמש עשרה השנים שבין 1915 ו-1930, עולם המדע – ובפרט הפיסיקה והקוסמולוגיה – עברו טלטלה דרמטית. בפרק זמן קצר זה השתנתה תמונת עולמנו מקצה לקצה, בזכות תאוריות פורצות דרך כדוגמת תורת היחסות ותורת הקוונטים. אחת הטלטלות הגדולות שחוו המדענים הייתה בעניין הבנת היקום שלנו. הנחות יסוד ואקסיומות שהיו מקובלות במשך אלפי שנים קרסו והתמוטטו, ובתוך שנים ספורות הוחלפו בתמונת עולם שונה ומשונה יותר משניתן היה אפילו לדמיין חמש עשרה שנים קודם לכן. הייתי שמח להיות שם כשזה קרה.
אחת השאלות המעניינות היא כיצד הגיבו המדענים לשינויים כל כך דרמטיים בתמונת העולם שלהם. מדענים, מטבע מקצועם, צריכים להיות מסוגלים לקבל ולהפנים עובדות ברורות, גם אם הן סותרות את הדעות שבהן החזיקו קודם לכן. מאידך, אנחנו יודעים עד כמה קשה לנו, בני האדם, לשנות את דעותנו המקובעות גם כשהמציאות סביב טופחת על פנינו. הפיזיקאי מקס פלאנק טבע משפט מפורסם בהקשר זה: "אמת מדעית חדשה אינה מנצחת על-ידי שכנוע המתנגדים לה, אלא כיוון שהמתנגדים לה מתים בסופו של דבר וגדל דור חדש הרגיל כבר אליה." מתח זה בין תמונת עולם ותיקה וממוסדת, ובין עובדות ותיאוריות חדשות שמכריחות את המדענים להיישיר מבט אל מציאות חדשה – בא לידי ביטוי בצורה המובהקת ביותר במושא פרק זה: מבנה היקום, והמפץ הגדול.
חוקרים בני כל התרבויות נשאו עיניהם אל השמים עוד מתקופות פרה-היסטוריות וערכו תצפיות אסטרונומיות מדויקות יותר ומדויקות פחות. היו אלה הפילוסופים היוונים – אריסטו, למשל – שבפעם הראשונה שאלו את עצמם כיצד נראה היקום שבו אנחנו חיים. מהו החלל שבו מרחפות נקודות האור שאנחנו רואים בשמיים כל לילה? ובפרט – האם היקום הזה הוא סופי, או שמא הוא משתרע לכל הכיוונים ללא שום גבול או קצה?…
הדעה הדומיננטית ביותר הייתה דעתו של אריסטו. הוא גרס כי היקום אינסופי וסטטי – דהיינו, קבוע ובלתי משתנה לנצח נצחים. פרט לשמש, לירח ולכוכבי הלכת, כל השאר הכוכבים קבועים במקומם ואינם זזים – ואם הם בכל זאת זזים מעט או משתנים, השינוי מקומי בלבד. דוגמה הולמת לתפיסה זו היא טיסה במטוס מעל הים. במבט מקרוב כל גל וכל אדווה נראים ייחודיים ודינמיים – אבל מגובה של כמה ק"מ, כל נקודה בים נראית פחות או יותר אותו הדבר. הים אינו גדל או קטן, ולא נעשה כחול יותר או ירוק יותר וכמותו, גם היקום שלנו סטטי ובלתי משתנה. למרות שבימי הביניים היו פילוסופים מוסלמיים שדחו את את הרעיון של יקום שאין רגע בריאה, בעיקר על רקע דתי – תאוריית היקום הסטטי תפסה אחיזה בקרב המלומדים באירופה והייתה הדעה השלטת במדע במשך קרוב לאלפיים שנה.
היו מספר סיבות טובות להגמוניה הזו. הסיבה הראשונית הייתה העובדה שלמראית עין, הכוכבים אכן לא זזים. אמנם פה ושם הופיעו גרמי שמיים חדשים למספר ימים או שבועות – בדרך כלל כוכבי שביט או התפרצויות סופר-נובה מרוחקות – אך ככלל, מפת הכוכבים הייתה תמיד קבועה ובלתי משתנה.
סיבה נוספת היא שתמונת העולם של היקום הסטטי והאינסופי התאימה גם להלך הרוח המדעי שצמח בעידן הרנסנס. במאה ה-15 הוכיח קופרניקוס, אסטרונום פולני, שכדור הארץ אינו במרכז היקום וכי הוא זה שמקיף את השמש, ולא השמש מקיפה אותו. חוקרים רבים שבאו אחריו – קפלר, גלילאו ואחרים – הראו לנו שכדור הארץ אינו מיוחד במינו אלא בסך הכל עוד כוכב לכת במערכת השמש, שמציית לחוקי הטבע בדיוק ככל שאר כוכבי הלכת. ההבנה שאיננו נמצאים במרכז היקום, במובן המילולי והמטפורי של הביטוי, הובילה את המדענים לנסח עיקרון מנחה בסיסי בשם 'העקרון הקוסמולוגי'. בצורתו הבסיסית ביותר, העיקרון הקוסמולוגי גורס שבעצם, אין שום מקום ביקום שהוא יחיד ומיוחד מכל השאר. חוקי הטבע פועלים בכל מקום באותו האופן, ולמרות ששמי הלילה אולי נראים מעט שונים כתלות בכוכב הלכת עליו אנו עומדים – באופן כללי, כל מקום ביקום נראה אותו הדבר וחוקי הטבע חלים עליו באותו האופן שבו הם חלים בכל מקום אחר. רעיון היקום הסטטי והאינסופי התאים לגישה זו, שכן בדומה לטיסה מעל הים – גם ביקום קבוע, בלתי משתנה וחסר גבולות, כל נקודה ביקום זהה לנקודה אחרת.
הפתרון של ניוטון
עד לפני כמה מאות שנים לשאלות האם היקום שלנו הוא סטטי או דינמי, והאם יש לו גבולות או שהוא אינסופי היו שאלות פילוסופיות לחלוטין, במובן שלא הייתה למדענים דרך מעשית כלשהי לנסות ולהשיב עליהן. אך בשנת 1687 פרסם אייזיק ניוטון את ספרו המפורסם 'העקרונות המתמטיים של פילוסופיית הטבע', וניסח, בפעם הראשונה, חוקים פיזיקליים אוניברסליים אשר אמורים להיות תקפים בכל מקום ביקום, כמו למשל האופן שבו משפיע כוח המשיכה על גוף כלשהו. כעת, כשהיו בידיהם חוקים אוניברסליים שכאלה, יכלו המדענים לנסות ולהשיב על השאלות הפילוסופיות האלה, שכן על פי העקרון הקוסמולוגי חוקי הטבע התקפים כאן, בכדור הארץ, אמורים להיות תקפים באותה המידה גם בקצוות המרוחקים ביותר של היקום.
הראשון שניסה להכליל את חוקי הפיסיקה על היקום כולו היה אייזיק ניוטון. בשנת 1692 ניהל ניוטון חלופת מכתבים עם כומר בשם ריצ'רד בנטלי שביקש למצוא הוכחות מדעיות לקיומו של אלוהים. ניוטון היה מועמד טבעי להשיב על שאלות הכומר שכן היה לא רק המדען החשוב ביותר בדורו, אלא גם אדם דתי ומאמין אדוק. בנטלי שאל את ניוטון כיצד משפיע כוח המשיכה על היקום בקנה מידה גדול, בהינתן ההנחה המקובלת של יקום אינסופי וסטטי שבו הכוכבים מפוזרים פחות-או-יותר באופן אחיד.
התשובה הראשונית שהציע ניוטון לבנטלי הייתה שאם היקום אינסופי וסטטי והכוכבים מפוזרים בתוכו באופן אחיד, אזי כוח המשיכה משפיע על כל הכוכבים באופן סימטרי. דהיינו, כל כוכב מפעיל על כל הכוכבים האחרים מסביבו כוח משיכה, וכיוון שכל כוכב נמשך לכל הכיוונים במידה שווה – הכוחות מבטלים זה את זה והכוכב נותר במקומו ללא תזוזה, כמו בתחרות משיכת חבל גלקטית שבה שתי הקבוצות שוות בכוחן.
פיתרון זה נראה, על פניו, כפיתרון הגיוני וקביל – אך בתוך זמן קצר הבין ניוטון שדרך על מוקש: הפיתרון שלו מחביא סתירה מסוכנת שמערערת את יסודותיה של תורת הכבידה. אם כל הכוכבים נמצאים בשיווי משקל מוחלט, מה יקרה אם לפתע פתאום תופיע הפרעה קטנטנה שתערער את שיווי המשקל הזה? למשל, כוכב שביט חולף. כוכב השביט יחלוף ליד כוכב ויפעיל עליו כוח משיכה שיהיה אמנם זעום, אבל בכל זאת יגרום לכוכב לזוז. תזוזה זו, מינורית ככל שתהיה, תשבור את הסימטריה המושלמת של כוח הכבידה מול שאר הכוכבים – ואז תגרום לתגובת שרשרת איומה: כמו אבני דומינו שמפילות אחת את השנייה, כל הכוכבים יתחילו להימשך זה לזה, עד שיתרסקו אחד לתוך האחר והיקום יגיע לקצו. כיוון שברור שהקטסטרופה הזו לא התרחשה – ישנה סתירה ברורה בין התאוריה של ניוטון למציאות.
ניוטון היה אדם מבריק, בכך אין כל ספק: הוא ראה והבין דברים שאיש לא ראה והבין לפניו. סביר להניח שהבין שאם תאורית הכבידה שלו נכונה אזי הנחת היסוד שלפיה היקום סטטי ואינסופי, היא המקור לסתירה. ועדיין, למרות חכמתו הרבה, ניוטון לא היה מסוגל להשליך מעליו את הנחת היסוד שהייתה קבועה ומקובעת במוח כל המדענים במשך אלפי שנים. הפיתרון שלו לסתירה היה להניח שאלוהים הוא זה שמתערב באופן פעיל ביקום, מרחיק את הכוכבים זה מזה לפי הצורך ומונע את ערעור השלווה הסטטית והאינסופית. תשובה זו סיפקה את ניוטון הדתי, וסיפקה גם את הכומר בנטלי שזכה ב'הוכחה' שחיפש לגבי קיומו של אלוהים.
אך מהסתירה שחשף ניוטון לגבי הנחת היקום הסטטי אי אפשר היה להתעלם לנצח. כמו הבלאגן במחסן שאשתך מבקשת שתסדר, ולא מפסיקה להציק לך למרות שאמרת לה שאתה תטפל בזה, ולא צריך להזכיר לך כל חצי שנה – הבעייתיות של הנחת היקום המשיכה 'לארוב' מתחת לפני השטח ורק חיכתה לרגע המתאים כדי לצוץ ולטרוד את מנוחתם של המדענים… רגע זה הגיע, לבסוף, בתחילת המאה העשרים.
משוואת השדה של איינשטיין
בשנת 1905 פרסם אלברט איינשטיין את תורת היחסות הפרטית. מבלי להיכנס לפרטי התאוריה עצמה, נאמר רק שבשנים הראשונות היא עניינה בעיקר מתמטיקאים ופיזיקאים תאורטיים: לא היו לה השלכות מעשיות במיוחד בתחום הקוסמולוגיה, הוא חקר היקום. עשר שנים מאוחר יותר, ב-1915, הציג איינשטיין את תורת היחסות הכללית ובמסגרתה, משוואה מתמטית בשם 'משוואה השדה של איינשטיין'. מהי אותה משוואת שדה?
כל משוואה מתמטית היא, בעיקרו של דבר, תאור של קשר בין משתנים כלשהם. המשוואה y=2x, לשם הדוגמה, מספרת לנו ש-y גדול פי שניים מ-x: הקשר ביניהם הוא כזה שאם x גדל, y גדל פי שניים.
משוואת השדה מתארת את הקשר שבין המרחב, ובין תכונותיה של מאסה הנמצאת במרחב הזה. אם למסה יש צורה או תכונות כלשהם – אזי למרחב שסביבה יהיה בהכרח צורה כלשהי, באותו האופן שבו אם ל-x, בדוגמה הקודמת שלנו, יש ערך מסוים – אזי הערך של y יהיה בהכרח כפול ממנו. הקשר שבין מאסה למרחב נובע מהעובדה שהמאסה יוצרת כוח משיכה ש'מעקם' ומשנה את צורת המרחב, כמו כדור כבד שמונח על משטח גומי של טרמפולינה וגורם לגומי לשקוע ולהימתח. ברור שאני חוטא כאן בפשטנות יתר: המרחב, למשל, אינו מרחב בלבד אלא גם זמן – והמאסה אינה רק מאסה אלא גם אנרגיה. אבל התיאור הפשטני בכל זאת ממצה את מהות העניין.
כדי לבדוק את משוואת השדה ולהוכיח את תקפותה, ערך איינשטיין ניסוי מחשבתי שאינו שונה באופן מהותי מהניסוי המחשבתי שערך אייזיק ניוטון לפניו. איינשטיין ניסה להחיל את המשוואה שלו על היקום בקנה מידה גדול, ולראות לאן המשוואה תוליך אותו. אם הניסוי המחשבתי יחשוף סתירות פנימיות בתאוריה, ייתכן ויהיה צורך לשנות אותה.
בצד אחד של המשוואה, כאמור, נמצאת המאסה והתכונות שמגדירות אותה. כמו ניוטון לפניו, איינשטיין הניח שכל הכוכבים מפוזרים ביקום בצורה אחידה, פחות או יותר – הנחה סבירה בקנה המידה של היקום כולו – ובדק מה קורה בצד השני של המשוואה, דהיינו איך נראה היקום. ובדיוק כמו ניוטון לפניו, גם איינשטיין גילה שהתוצאה היא יקום לא יציב. המשוואה של איינשטיין חזתה שאם כל הכוכבים מפוזרים בצורה אחידה ביקום, במוקדם או במאוחר כוח המשיכה יגרום להם להתקרב אחד אל השני, ואז היקום כולו יקרוס לתוך עצמו.
אלו היו חדשות רעות מאוד עבור איינשטיין. כולם ידעו שהיקום שלנו סטטי ובלתי משתנה, ואינו נמצא בתהליך של קריסה מתמשכת: זו הייתה אמת ברורה במשך אלפי שנים. בניגוד לניוטון, לאיינשטיין לא הייתה כל כוונה לתת לאלוהים תפקיד בואלס הקוסמי של תנועת הכוכבים: הוא רצה שהתיאוריה שלו תיתן תיאור מושלם של היקום, ללא חורים או דלתות נסתרות.
כדי לתקן את התאוריה ולהתאים אותה להנחת היקום הסטטי, איינשטיין הוסיף קבוע חדש למשוואה – מספר המייצג כוח כלשהו שמתנגד להתכווצות היקום: מעין 'אנטי-גרוויטציה', אם תרצו. הכוח הזה – והקבוע שמייצג אותו במשוואת השדה – חלש דיו כדי שלא נוכל לחוש בהשפעותיו בקנה המידה של כדור הארץ או אפילו מערכת השמש, אבל חזק מספיק כדי להשפיע בקנה המידה של הקוסמוס, היקום – וזה המקור לשמו: 'הקבוע הקוסמולוגי'.
הבעיה הגדולה ביותר עם הקבוע הקוסמולוגי הייתה שהוא היה פיתרון מכוער מאוד לסתירה שנחשפה במשוואת השדה. קשה להסביר כיצד יכול להיות קבוע מתמטי 'מכוער' במשוואה מתמטית – אבל זהו רעיון שרובנו יכולים לתפוס אותו בקלות בתחומים אחרים. דמיינו לעצמכם אופנוע הארלי-דיווידסון יפיפייה, בעל קימורים חלקים ומבריקים – מהסוג שגורם לכל חובב אופנועים להזיל ריר. אבל למעצב האופנוע הייתה בעיה: מושב הנהג מתחמם קצת יותר מדי. מה עשה? לקח מאוורר תעשייתי, כזה שקונים במאה שקל בחנות חשמל, והצמיד אותו לירכתי האופנוע. התוספת הזו פתרה את הבעייה – אבל עכשיו יש לנו אופנוע סקסי ויפיפייה, בעל קימורים חלקים ומבריקים – עם מאוורר ענקי ומכוער שמחובר לו לתחת – פיתרון שבברור אינו אלגנטי.
הקבוע הקוסמולוגי של איינשטיין היה מכוער ולא אלגנטי, ממש כמו מאוורר תעשייתי על אופנוע. הקבוע לא נבע באופן טבעי מהתאוריה כשאר חלקי המשוואה, אלא 'הולבש' עליה באופן מלאכותי כדי לפתור בעיה שנתגלעה בה. כולם בעולם הפיזיקה ראו זאת, וגם איינשטיין עצמו לא אהב את הפיתרון שמצא לסתירה שחשף. במכתב שכתב שנים רבות לאחר מכן אמר –
"הוספת קבוע שכזה למשוואה היוותה ויתור משמעותי על הפשטות הלוגית של התאוריה… מהרגע שהוספתי את הקבוע [הקוסמולוגי] למשוואה, מצפוני תמיד הציק לי… איני מסוגל להאמין שדבר כה מכוער עשוי להתקיים בטבע."
אך למרות שהוספת הקבוע הקוסמולוגי פגעה בחוש האסתטי של איינשטיין בעוד הוא התגאה בפשטות האלגנטית של התאוריות שהגה, פגיעה זו לא הייתה קשה מספיק כדי לגרום לאיינשטיין לפקפק בהנחת היסוד שלו, הנחת היקום הסטטי והאינסופי.
בשנת 1912 – שלוש שנים לפני תורת היחסות הכללית של איינשטיין – בחן אסטרונום אמריקני בשם וסטו שליפר (Slipher) את האור הנפלט מגלקסיות אחרות וחישב את מהירות תנועתן. שליפר גילה שהגלקסיות שבהן צפה נעות מהר יותר מכפי שמישהו שיער קודם לכן: היו כאלה ש'טסו' במהירויות של כאלף ק"מ בשנייה. כוכבים בשביל החלב, לשם השוואה, נעים במהירות של כחמישים ק"מ בשנייה בלבד.
תגלית זו לגבי מהירות הגלקסיות אכן הייתה מסקרנת, אך איינשטיין לא התרשם ממנה במיוחד. ביחס למהירות האור – כשלוש מאות אלף ק"מ בשנייה – אפילו הגלקסיה המהירה ביותר שבחן שליפר נעה לאט כמו חילזון ומכאן, טען איינשטיין, שבקירוב טוב אפשר עדיין להניח שהיקום סטטי וקבוע.